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Deterministic implementation of weak quantum cubic nonlinearity
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We propose a deterministic implementation of weak cubic nonlinearity, which is a basic building block of a
full-scale continuous-variable quantum computation. Our proposal relies on preparation of a specific ancillary
state and transferring its nonlinear properties onto the desired target by means of deterministic Gaussian operations
and feed forward. We show that, despite the imperfections arising from the deterministic nature of the operation,
the weak quantum nonlinearity can be implemented and verified with the current level of technology.
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I. INTRODUCTION

Ever since it has been first mentioned by Feynman [1],
quantum computation has been the holy grail of quantum-
information theory, because the exponential speedup it offers
promises to tackle certain computational problems much faster
than any classical computer could [2]. The original approach
to quantum computing relied on manipulation of discrete
quantum systems [3], but later it was shown that the same
speedup can be achieved by computing with continuous-
variable (CV) quantum systems, and that CV systems may
be even more effective [4,5].

Besides the readily available operations with Hamiltonians
composed of first (linear) and second (quadratic) powers of
quadratic operators x̂ and p̂, CV quantum computation re-
quires a single kind of nontrivial resource—a single operation
with a Hamiltonian at least cubic (third power) in quadrature
operators [4]. Unfortunately, the currently achievable experi-
mental interaction strengths are too low compared to noise to
be of use.

Fortunately, the need for currently unavailable cubic unitary
evolution may not be so dire. Let us recall the original
statement of Lloyd and Braunstein [4]: If one has access to
Hamiltonians Â and B̂, one can approximatively implement
an operation with Hamiltonian i[Â,B̂]. Approximatively is the
key term here, meaning that the desired operation is engineered
only as a quadratic polynomial of the interaction time:

eiÂt eiB̂t e−iÂt e−iB̂t ≈ e−[Â,B̂]t2 + O(t3). (1)

Consequently, even the initial operations need not be unitary—
their quadratic approximations are fully sufficient. What this
means is that if we take interest in a sample cubic interaction
with Hamiltonian Ĥ ∝ x̂3, we need not implement the unitary
eiχx̂3

, where χ is a real parameter, but it is enough to be able
to perform operation

O6(x̂) = 1 + iχx̂3 − χ2x̂6/2. (2)

This is the lowest order expansion for which the commutator
trick (1) works, but let us start with the real lowest order
expansion, 1 + βx̂3, where β is a complex number. This
expansion behaves as a weak cubic coupling if β is imaginary
and has the added benefit that it can be used to compose

(2) when the respective values of β are complex and chosen
properly. In principle, even this gate can be further decomposed
into series of 1 + γ x̂ (γ ∈ C) operations [6]. These phase
sensitive gates can be implemented probabilistically on a
traveling beam of light by subsequent application of photon
subtraction and photon addition, represented by operators
â = (x̂ + ip̂)/

√
2 and â† [7–9]. They are very useful for

preparing various ancillary states, but for use in a full-fledged
information processing we are interested in their deterministic
implementation.

II. IDEAL IMPLEMENTATION

To this end we employ the approach of [10], thoroughly dis-
cussed in [11], where it was suggested that a unitary operation
acting on a state can be deterministically implemented with
the help of a proper resource state, a quantum nondemolition
(QND) coupling, a suitable measurement, and a feed-forward
loop. Explicitly, for operation O(x̂) acting on the pure state
|ψ〉 = ∫

ψ(x)|x〉dx, the resource state is O(x̂)|p = 0〉. After
QND coupling, represented by the unitary ÛQND(λ) = eiλx̂2p̂1 ,
is employed and the overall state is transformed to∫

ψ(x)O(y)|y − λx,x〉dxdy, (3)

the ancillary resource mode gets measured by a homodyne
detection. We can for now assume λ = 1, as the overall
message remains unchanged. For any detected value q the
output state is ∫

ψ(x)O(x + q)|x〉dx. (4)

To obtain the desired result, one either postselects only for
situations when q = 0 was detected, or applies a feed forward
which would compensate for x + q in the argument of the
operator. It has been shown in [10] that if the desired operation
O(x) is a unitary operation driven by a Hamiltonian of order
n, the feed-forward operation requires a Hamiltonian of order
n − 1. Explicitly, imperfections in the operator O(x̂ + q) =
exp[iχ (x̂ + q)3] can be compensated by the unitary operator
ÛFF = exp[−iχ (3qx̂2 + 3q2x̂)], which is a combination of
displacement, squeezing, and phase shifts. The operation
(2) we are interested in is not unitary, but since it is an
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approximation of a unitary driven by a cubic Hamiltonian, a
feed forward of squeezing and displacements should perform
adequately, up to some error. We’ll get to this issue later.
In fact, the operations available for feed forward limit us in
what we can do. With squeezing and displacement we can
implement only cubic operations. Of course, with them we
could also tackle Hamiltonians of the fourth order, and so on.
And there is another limitation—since the feed forward must
be deterministic and noiseless, and therefore unitary, it can
be only used to deterministically compensate unitary (at least
approximatively) operations whose Hamiltonian is Hermitian.
Therefore we cannot use the trick of implementing a series
of 1 + γ x̂ operations; we have to implement operation (2) in
one go. Consequently, we need a sufficiently complex resource
state.

III. RESOURCE STATE GENERATION

Let us now shift our attention to the required resource
state. In realistic, even if idealized, considerations, one has
to, instead of a position eigenstate, use a squeezed state
S|0〉 = [

∫
exp(−x2/g)|x〉dx]/(πg)1/4, which approaches the

ideal form as g → ∞. The resource state can now be expressed
as O(x̂)Ŝ|0〉 = ŜO(x̂/

√
g)|0〉 which is a state finite in a

Fock basis with a superficial layer of squeezing. As it has
a finite structure, the state can be engineered by a sequence
of six photon additions [12] or photon subtractions [13].
This is an extremely challenging task; let us therefore first
focus at the lowest nontrivial cubic Hamiltonian expansion,
O3(x̂) = 1 + χx3, which is a feasible extension of recent
experimental works [14]. The appropriate resource state looks
like

Ŝ(1 + χ ′x̂3)|0〉 = Ŝ

(
|0〉 + χ ′ 3

2
√

2
|1〉 + χ ′

√
3

2
|3〉

)
, (5)

with χ ′ = χg−3/2. This state can be generated from a squeezed
state by a proper sequence of photon subtractions and
displacements [13], which acts as (â − α)(â − β)(â − γ )Ŝ|0〉.
Since the squeezing operation transforms the annihilation
operator as Ŝ†âŜ = μâ − νâ†, where μ = cosh(ln

√
g) and

ν = sinh(ln
√

g), the required displacements can be obtained
as a solution of the set of equations:

A = αβγ, α + β + γ = 0,
(6)

2
√

2ν3 = Aχ ′, 3ν2 + 3μν = (αβ + αγ + βγ ) ,

where A is a constant parameter related to normalization. The
solution exists and it can be found analytically as

α = ξ +
√

ξ 2 − 4ζ

2
,

β = ξ −
√

ξ 2 − 4ζ

2
, (7)

γ = −(α + β).

Here ξ and ζ are solutions of the set of equations

xy + C1 = 0, y − x2 − C2 = 0, (8)

where C1 = ν32
√

2χ ′−1 and C2 = 3ν2 + 3μν. The solu-
tions of (8) always exist and they can be obtained analytically

using the Cardan formula. The squeezing used in the state
generation can be in general different from the squeezing in (5).
However, squeezing can be considered to be a well accessible
operation, and we shall therefore not deal with this in detail.
It should be noted that an alternative way of preparing the
state (5) lies in performing a suitable projection onto a single
mode of a two-mode squeezed vacuum state. Engineering of
the proper measurement, which too requires three avalanche
photodiodes (APDs) and three displacements, leads to similar
equations as in the previous case (6) with the solution of the
same form.

IV. REALISTIC IMPLEMENTATION

With the resource state at our disposal we can now look
more closely at the two ways to implement the gate, the
probabilistic and the deterministic, in order to compare them
and see what is the manifestation of high order nonlinearity
in the deterministic case. The probabilistic implementation is
rather straightforward. Using the resource state (5) we are able
to transform the initial state to

|ψ0〉 =
∫

ψ(x)O(x)e−x2/2g|x〉dx, (9)

and as the squeezing of the resource state approaches infinity,
the produced state approaches its ideal form. The final state
is always pure and the actual composition of the operator
On(x) can be arbitrary, allowing us, for example, to implement
the operator O in n different nonunitary steps. On the other
hand, if the resource squeezing is insufficient compared to the
distribution of the state in phase space, it seriously affects some
properties of the state—for example, moments of x quadrature
may not be preserved any more.

But let us move toward the more interesting part, the
deterministic approach. In this case the operation produces
a mixed state

ρ ′ =
∫

P (q)|ψq〉〈ψq |dq. (10)

Here, P (q) represents the probability of measuring a specific
outcome q, and

|ψq〉 = 1√
P (q)NR

∫
ψ(x)e−(x+q)2/2gO(x + q)

× e−iχq3−i3χ(xq2+x2q)|x〉dx, (11)

where NR is the norm of the resource state, stands for
the respective quantum state corrected by feed forward.
Ideally, O(x + q)e−i3χ(xq2+x2q) ≈ O(x), but this relation can
obviously work only when both x and q are small enough
for the exponent to be reasonably approximated by the finite
expansion On. It is, therefore, quite unfortunate that the very
condition required for the operation to work flawlessly, the
need for g → ∞, is compatible with the feed forward only
in the limit of χ → 0. To quantify these properties in greater
detail we need to employ a suitable figure of merit.

V. ANALYSIS

To evaluate the quality of the approximate operation is not
a straightforward task. If we want to conclusively distinguish
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the cubic type nonlinear interaction from a Gaussian one, we
can take advantage of the known way the quadrature operators
transform: x̂ → x̂, p̂ → p̂ + χx̂2. If we apply the operation,
in form of a black box, to a set of known states, we can analyze
the transformed states to see whether the operation could be
implemented by a suitable Gaussian, or if it is more of what we
aim for. The analysis can be as easy as checking the first two
moments of the quadrature operators, because the nonlinear
dependence of 〈p̂〉 on 〈x̂〉 can not be obtained by a Gaussian
operation, unless we consider a rather elaborate detection-and-
feed-forward setup, which would, however, introduce an extra
noise detectable either by checking the purity of the state, or
by analyzing higher moments 〈x̂2〉 and 〈p̂2〉.

The case with a purity of 1 is straightforward to verify—
as soon as the first moments have the desired form, 〈x̂ ′〉 =
〈x̂〉 and 〈p̂′〉 = 〈p̂〉 + χ〈x̂2〉, we can be certain a form of the
desired non-Gaussianity is at play. In the presence of noise,
the confirmation process is more involved, and we shall deal
with it in a greater detail.

It needs to be shown that, in comparison to the deterministic
approximation, no Gaussian operation can provide the same
values of moments 〈x̂ ′〉, 〈x̂ ′2〉, and 〈p̂′〉 without also resulting
in a significantly larger value of moment 〈p̂′2〉 caused by
the extra noise. The complete Gaussian scheme consists of
an arbitrary Gaussian interaction of the target system with
a set of ancillary modes followed by a set of measurements
of these modes yielding values which are used in a suitable
feed forward to finalize the operation. In the case where the
approximate transformations approach the ideal scenario, i.e.,
when 〈x̂ ′〉 = 〈x̂〉, 〈x̂ ′2〉 = 〈x̂2〉, and 〈p̂′〉 = 〈p̂〉 + χ〈x̂2〉, only
a single ancillary mode is sufficient, the optimal Gaussian
interaction is in the QND interaction with a parameter λ, and
after a value of ξ is measured by a homodyne detection, the
feed-forward displacement of κξ 2 ensures the correct form
of the three moments. In the end, the Gaussian approximated
state can be expressed as

ρ ′′
S =

∫
dxD̂S(κx2)A〈x|ÛQND(λ)ρ̂S

⊗ |0〉〈0|Û †
QND(λ)|x〉D̂†

S(κx2), (12)

where the subscripts S and A denote the signal and the ancillary
mode, respectively. The high order classical nonlinearity is
induced by the nonlinear feed forward, represented by the
displacement D̂(α). The strength of the QND interaction λ

remains a free parameter over which can the procedure be
optimized to obtain the best approximation characterized by
the minimal possible value of the extra noise term in 〈p̂′2〉.

We analyze the aforementioned properties over a set of
small coherent states α with |α| < 2. We compare the state
obtained by the approximative cubic interaction with the state
created by the Gaussian method. In principle, this could be
done for both the deterministic and the probabilistic approach,
but since the probabilistic approach has the potential to
work perfectly, we shall keep to deterministic methods in
our comparative endeavors. For each coherent state and its
cubic-gate transformed counterpart, we can, from knowledge
of the first moments of quadrature operators, estimate the
actual cubic nonlinear parameter and use it to construct
the benchmark Gaussian-like state (12). The final step is
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FIG. 1. (Color online) (a) First moments relative to the real part
of α. Solid red and blue lines represent the ideal values of 〈p̂〉 and
〈x̂〉, respectively. Red and blue crosses then show these values for the
deterministic non-Gaussian approximation, while red and blue circles
do so for the Gaussian approximation. Dashed green line is a quadratic
fit for 〈p̂〉. The experimental parameters are g = 1 and χ = 0.03.
(b) Second moments relative to the real part of α. Solid red and
blue lines represent the ideal values of 〈p̂2〉 and 〈x̂2〉, respectively.
Red and blue crosses then show these values for the deterministic
non-Gaussian approximation, while red and blue circles do so for the
Gaussian approximation.

to compare the extra noise present in p̂ quadrature—if the
added noise for the approximate state is below the Gaussian
benchmark, we can assume a non-Gaussian nature of the
operation.

As an example, let us look at a particular scenario, in
which the deterministic cubic gate was applied to a set
of coherent states with the imaginary part of the complex
amplitude constant. The effect of the operation is illustrated
in Fig. 1. Figure 1(a) shows the first moments and reveals
that for this purpose, effective cubic nonlinearity of χeff = 0.1
can be reliably obtained for both the non-Gaussian and the
Gaussian approaches. Differences arise, though, for the second
moments, where the value of the Gaussian quadrature moment
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FIG. 2. (Color online) Schematic experimental setup of the
deterministic x3 gate. BS, beam splitter; PBS, polarization beam
splitter; PS, phase shift; PR, polarization rotator; APD, avalanche
photodiode; HD, homodyne detection; and D, displacement.

〈p̂2〉 is observably higher than the value of its non-Gaussian
counterpart. The values of the Gaussian moment were obtained
by optimizations of (12) for each particular value of Reα; it
is, therefore, a stronger benchmark than a universal Gaussian
operation, working over the whole range of Reα, would
be. And it is still beaten by the imperfect deterministic
non-Gaussian method with no squeezing in the ancillary mode.

VI. EXPERIMENTAL SETUP

The resource state generation requires three-photon sub-
traction from a squeezed or a two-mode squeezed light, with
appropriate displacements (Fig. 2). Two photon subtractions
have been already implemented [14] and three of them are
within reach. The resource state is then coupled with the input
using a QND gate with offline squeezing [15,16], which can be
modified as to reliably manipulate the non-Gaussian resource
state [17]. The final step lies in performing a sequence of
feed forwards driven by a homodyne measurement of the
ancilla [10]. Of those, the only nontrivial one is given by
the unitary eiλx2

, where the actual value of λ depends on
the measurement. This operation can be decomposed into a
sequence of a phase shift by φ1, squeezing with gain gf ,
and another phase shift by φ2, where the parameters satisfy
tan φ1 tan φ2 = −1, tan φ1 = gf , and (1 − g4

f ) cos φ1 sin φ2 =
2gf λ. Adjusting the squeezing gain on the fly can be done by
exploiting the universal squeezer [15,18], where the amount
of squeezing is controlled by changing the ratio of the beam
splitter, which can be done by a sequence of a polarization
beam splitter, the polarization rotator, and another polarization
beam splitter, where the rotator controls the splitting ratio.
The nonlinear dependence of the feed-forward parameters

on the measurement results requires a sufficiently fast data
processing, but that too is available today [19].

VII. CONCLUSION

We have proposed an experimentally feasible way of
deterministically achieving weak nonlinearity of the third
order. The procedure effectively engineers the operation on a
single photon level and then deterministically cuts and pastes
the properties onto the target state. This is reminiscent of the
teleportation based gates presented in [20,21], but there are
a few crucial differences. In the teleportation based gates,
there is only a single resource state for both the teleportation
and for the imparting of the nonlinear properties. As such,
the state needs to be highly entangled, because otherwise the
state would be transferred with too much noise to be of any
further use. The need for a high entanglement then clashes with
the limited-photon-number nature of the nonlinearity. In our
implementation, the ancillary resource state has no squeezing
at all, which allows the imparted nonlinearity to be observably
large, while the Gaussian mediating interaction is driven by
strong squeezing, ensuring minimal noise added during the
operation. The limited number of photons still plays a role,
though, and the nonlinearity can be faithfully applied only to
target states which are sufficiently weak. Furthermore, since
there is no such thing as a free lunch, the subsequent use of the
transformed state in attempts to generate higher nonlinearities
as per [4] requires higher and higher numbers of single photons
used in the engineering.

The approach is not flawless. There are several sources of
noise which can be simultaneously reduced only in the limit of
an infinitely small (read unobservable) interaction. This is due
to the finite photon approximation of the cubic gate not being
unitary and therefore not perfectly correctable by the unitary
feed forward. Nevertheless, we have shown that even with
this noise, a demonstration of decisively non-Gaussian high
order quantum deterministic nonlinearity going well beyond
classical attempts, based on higher order nonlinearity in the
feed-forward loop, can be observed already now.
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